令和元年度(2019年度) 静岡県臨床検査精度管理調査報告会

形態検査

J A静岡厚生連 遠州病院 臨床検査科 市川 佐知子

今回の試料と調査の目的

試料27

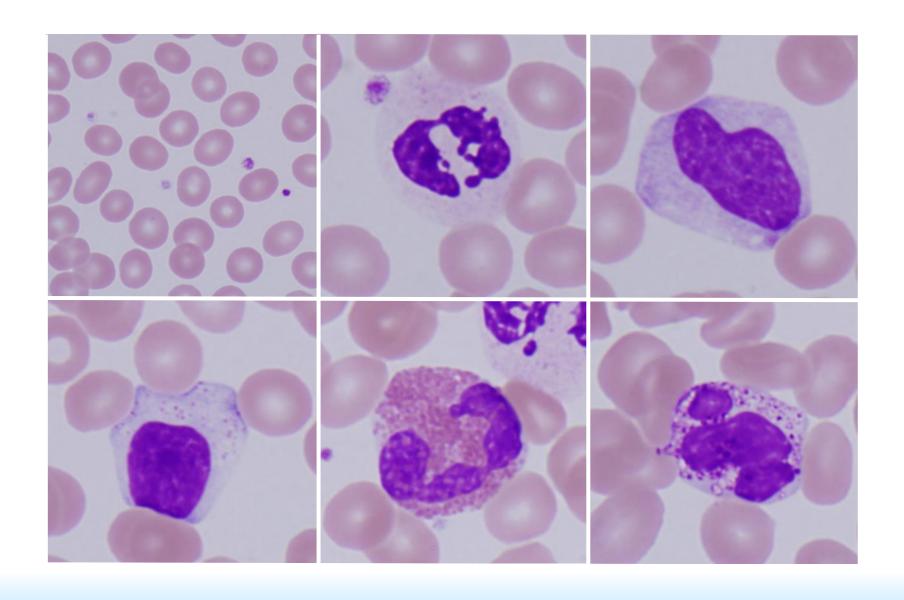
試料) 採血後速やかに血算測定し、標本作製した 健常人試料

目的)・参考検査データ(生化学・血算・機器の白血球 分類)を参考にして結果を出すこと 昨年度、血算測定に使用した試料を用いた形態検査 では正常試料の十分な調査ができなかったため

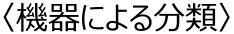
試料27 検査データ

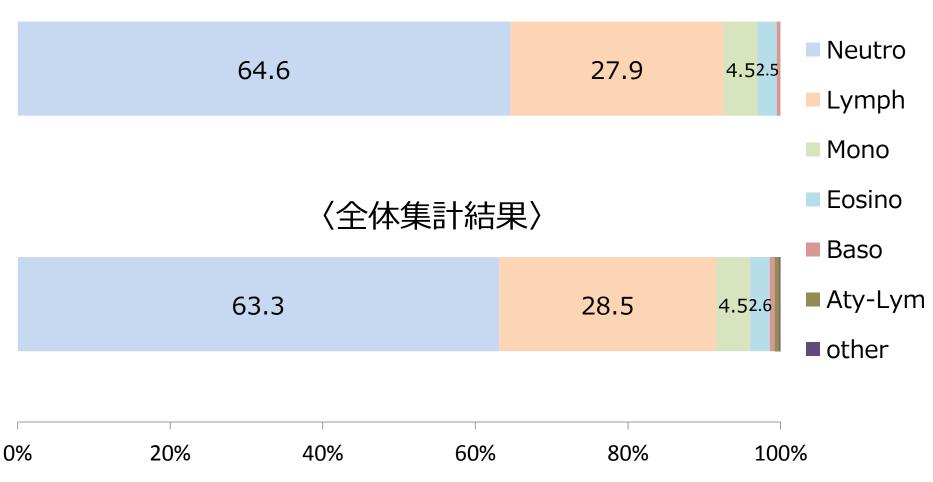
60歳代 女性

<血算>

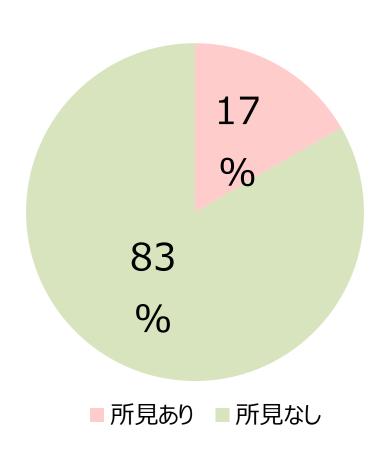

WBC	5.6	×10 ⁹ /L
RBC	3.93	×10 ¹² /L
Hb	11.4	g/dL
Ht	33.9	%
MCV	86.3	fL
MCH	29.0	pg
MCHC	33.6	g/dL
PLT	199	×10 ⁹ /L
RDW-SD	39.8	fL

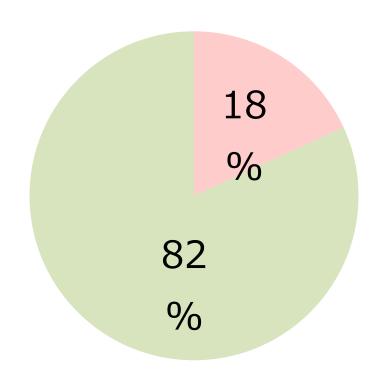
く機器による分類>


Neutro	64.6	%
Lymph	27.9	%
Mono	4.5	%
Eosino	2.5	%
Baso	0.5	%


<生化学>

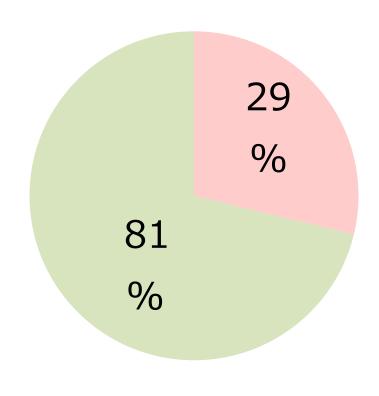
TP	7.1	g/L
T-BIL	0.87	mg/dL
AST	28	U/L
ALT	13	U/L
LD	181	U/L
CK	88	U/L
AMY	64	U/L
BUN	12.8	mg/dL
CRE	0.60	mg/dL
UA	4.4	mg/dL
Na	138	mEg/L
K	3.7	mEg/L
Cl	102	mEg/L
CRP	0.13	mg/dL
Glu	106	mg/dL


機器による分類と全体集計結果


試料27の各血球所見(赤血球)

赤血球所見	施設数
大小不同	7
奇形赤血球	4
楕円赤血球	1
標的赤血球	1
パッペンハイマー小体	1
球状赤血球	1
変形赤血球	1
所見記載なし	55

試料27の各血球所見(白血球)


白血球所見	施設数
核過分葉好中球	9
低顆粒好中球	1
中毒性顆粒	1
異常リンパ球	1
右方移動	1
所見記載なし	54

■所見あり ■所見なし

試料27の各血球所見(血小板)

血小板所見	施設数
大小不同	4
巨大血小板	3
大型血小板	11
血小板凝集	1
所見記載なし	47

■所見あり ■所見なし

今回の試料と調査の目的

試料28

診断) CMML (MDS/MPN)

- 目的)・機器の白血球分画を参考にして結果を出すこと
 - ・血球の形態異常の指摘
 - ・検査データや標本から疾患を予測し、追加検査等 の指摘

末梢血の単球増加には注意すべきこと 以前に取り上げたMDSの血球所見の確認をする ことを目的とした

試料28 検査データ

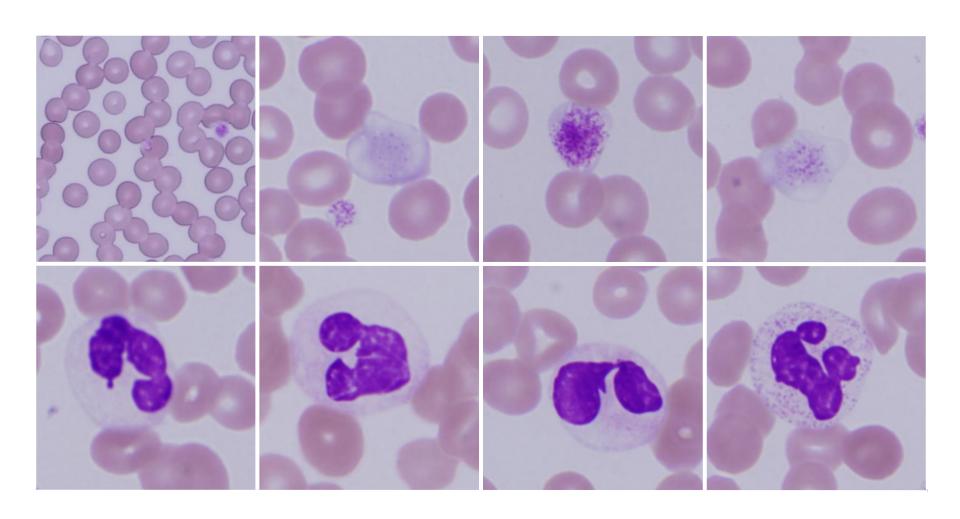
70歳代 男性

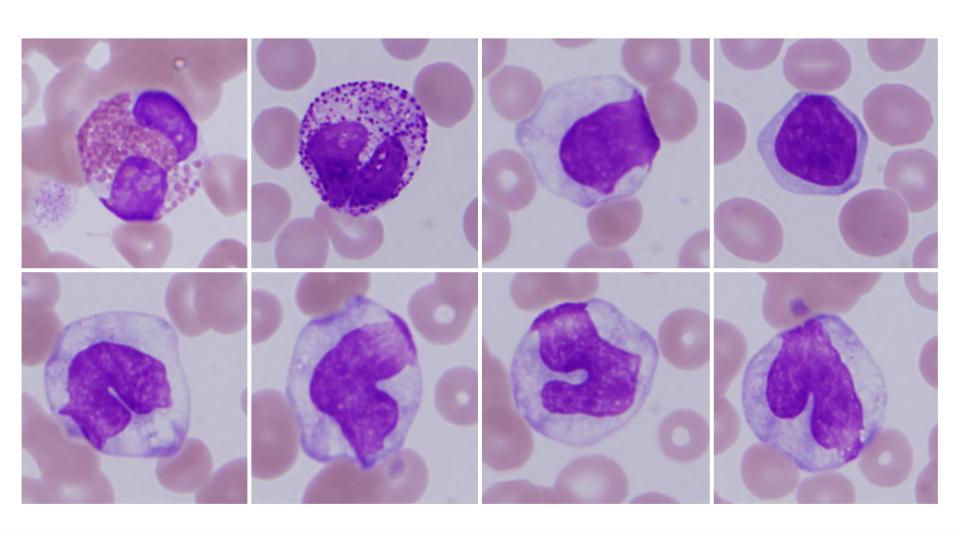
<血算>

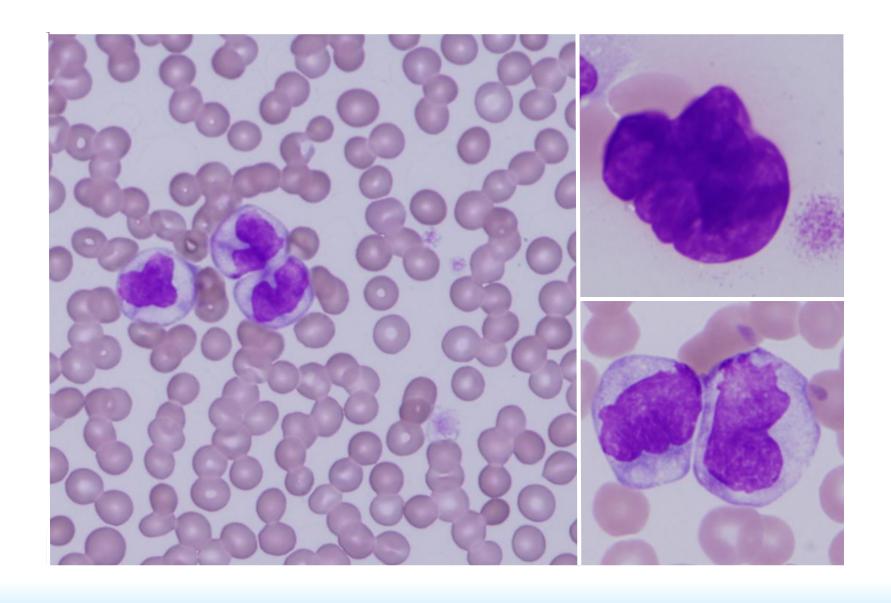
WBC	11.8	×10 ⁹ /L
RBC	4.09	×10 ¹² /L
Hb	11.7	g/dL
Ht	37.0	%
MCV	90.5	fL
MCH	28.6	pg
MCHC	31.6	g/dL
PLT	107	×10 ⁹ /L
RDW-SD	47.8	fL

く機器による分類>

Neutro	64.1	%
Lymph	11.7	%
Mono	23.5	%
Eosino	0.5	%
Baso	0.2	%


く機器メッセージ>


Monocytosis:単球増加


IG Present:未熟顆粒球増加

<生化学>

TP	7.3	g/L
T-BIL	0.78	mg/dL
AST	12	U/L
ALT	8	U/L
LD	202	U/L
CK	34	U/L
AMY	N.T.	U/L
BUN	9.6	mg/dL
CRE	0.97	mg/dL
UA	N.T.	mg/dL
Na	142	mEg/L
K	4.2	mEg/L
Cl	107	mEg/L
CRP	5.64	mg/dL
Glu	143	mg/dL

WHO分類2016改訂による骨髄系腫瘍

- •骨髓增殖性腫瘍
- •肥満細胞症
- ・PDGFRA,PDGFRBまたはFGFR1遺伝子の再構成あるいはPCM1-JAK2を伴う骨髄/リンパ系腫瘍
- ·骨髓異形成/骨髓増殖性腫瘍(MDS/MPN)
- ·骨髄異形成症候群
- ・胚細胞系列の素因を伴う骨髄系腫瘍
- ・急性骨髄性白血病と関連腫瘍
- 芽球形質細胞様樹状細胞腫瘍
- ・系統が明らかでない急性白血病

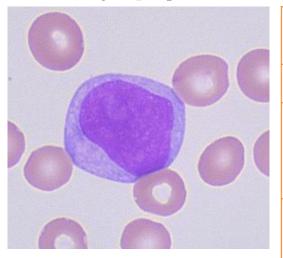
MDS/MPN

(myelodysplastic/myeloproliferactiveneoplasms)

- 1) CMML(chronic myelomonocytic leukemia) 慢性骨髄単球性白血病
 - ・CMML-0 芽球、前単球<2%(末梢血)かつ芽球<5%(骨髄)
 - ・CMML-1 芽球、前単球2-4%(末梢血)または芽球5-9%(骨髄)
 - ・CMML-2 芽球、前単球5-19%(末梢血)または芽球10-19%(骨髄)またはアウエル小体(+)
- 2) aCML,BCR-ABR1- : BCR-ABR1陰性非定型慢性骨髄性白血病
- 3) JMML :若年性骨髓単球性白血病
- 4) MDS/MPN-RS-T : 血小板増加及び環状鉄芽球を伴う MDS/MPN
- 5) MDS/MPN,U : 分類不能のMDS/MPN

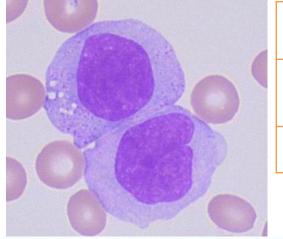
CMMLの診断基準(WHO分類第4版)

- 1. 持続する末梢血単球増加 > 1×10⁹/L
- 2. Ph染色体あるいはBCR/ABL1融合遺伝子が検出されない
- 3. PDGFRAあるいはPDGFRB遺伝子再構成が検出されない (特に好酸球増加例で除外されること)
- 4. 末梢血、骨髄中の芽球 *20%未満
- 5. 顆粒球、赤芽球、巨核球系の1系統以上に異形成を認める


もし異形成がないか軽度である場合は上記1~3に加えて次の条件を満たす

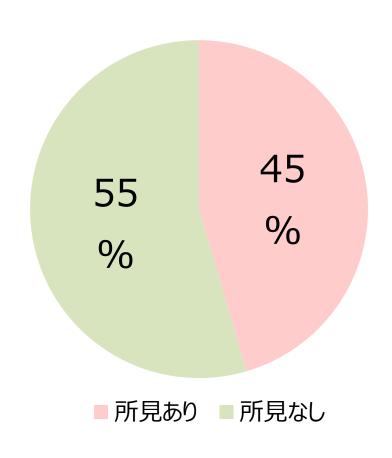
- ・ 骨髄細胞中に後天性、クローン性の染色体異常が検出される
- ・ 単球増加が3か月以上持続する
- ・ 他の原因による単球増加症が除外される

* 芽球:骨髄芽球、単芽球、前単球を含む

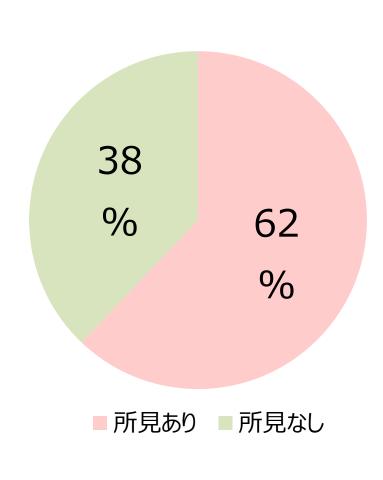

単球系細胞

単芽球

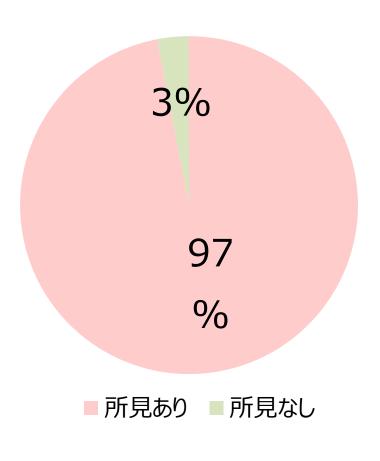
	単芽球 形態学的な特徴	
大型細胞で、比較的広い細胞質を有する		
細胞質	中等度〜強い好塩基性であり、偽足形成を認めることがある ある 散在する微小アズール顆粒と空胞を有することがある	
核	円形、クロマチンはデリケートなレース状であり明瞭な 核小体を有する	


前単球

	前単球 形態学的な特徴
細胞質	単芽球よりは好塩基性は弱く、しばしば微細で明瞭な アズール顆粒や空胞を有する
核	不整でデリケートな陥凹を認める


試料28の各血球所見(赤血球)

赤血球所見	施設数
大小不同	18
連銭形成	14
パッペンハイマー小体	1
球状赤血球	1
多染性赤血球	2
奇形赤血球	1
低色素	1
所見記載なし	36


試料28の各血球所見(白血球)

白血球所見	施設数
好中球顆粒減少	16
脱顆粒好中球	12
偽ペルゲル異常	4
好中球顆粒不均一	2
大型好中球	1
単球増加	6
幼若単球	2
芽球様細胞	2
巨核球	1
異型リンパ球	1
所見記載なし	25

試料28の各血球所見(血小板)

血小板所見	施設数
巨大血小板	51
大型血小板	19
大小不同	10
脱顆粒血小板	6
巨核球	3
血小板凝集	4
フィブリン(+)	1
所見記載なし	2

入力チェックシート

2019 年度 血液部門データ入力チェックシート

入力間違いを防ぐため、今年度はチェックシートを作成しました。 血液部門に関して、参加項目の結果入力の際にご活用ください。 尚、このチェックシートは返送する必要はありません。

	チェ	チェック欄	
入力チェックシート		確認者	
血算			
1. 通常業務の患者検体と同様に測定を行い、測定値を確認する			
2. 白血球数 単位 $(\times 10\%L)$ を確認し、小数点第 2 位を四捨五入し	して		
小数点第1位まで入力する			
3. 赤血球数 単位 $(\times 10^{12}/L)$ を確認し、小数点第 3 位を四捨五入し	して		
小数点第2位まで入力する			
4. ヘモグロビン濃度 単位 (g/dL) を確認し、小数点第 2 位を四捨る	五入		
して小数点第1位まで入力する			
5. Ht · MCV · MCH · MCHC			
小数点第2位を四捨五入して、小数点第1位まで入力で	する		
6. 血小板数 単位 (×10°/L) を確認し、小数点第1位を四捨五入して	(
整数を入力する			
7. 機器による白血球分類 単位は%とし、小数点第2位を四捨五入し	て		
小数点第1位まで入力する			
8. 機器による白血球分類 各血球の数値を間違いなく入力する			
(入力順に) 好塩基球・好酸球・好中球・リンパ球・単	Ú 球		
9. 試料 24 と試料 25 が逆に入力されていないことを確認する			
凝固			
1. 通常業務の患者検体と同様に測定を行い、測定値を確認する			
2. PT 平均値の小数点第3位を四捨五入して、小数点第2位			
まで入力する			
3. APTT 平均値の小数点第3位を四捨五入して、小数点第2位			
まで入力する			
4. Fib 平均値の小数点第1位を四捨五入して整数を入力する			
5. 試料 21 と試料 22 が逆に入力されていないことを確認する			
血液像			
1. 通常業務の患者検体と同様に標本の観察を行い、結果を確認する			
2. 白血球を 200 カウントして、%で入力する			
3. コメントの誤入力・誤字がないか確認する			
4. 試料 27 と試料 28 が逆に入力されていないことを確認する			

使用目的

・ 例年のデータ入力ミスの対策として実施

結果

・ 例年同様、血算・凝固の入力ミスがあった

今後の更なる対応

チェックシートの使用は未確認だったためチェックシートの回収も必要?

精度管理調査 過去4回の振り返り

2016年(第33回) EBVウイルス感染症

MDS

2017年(第34回) 重症感染症

MDS overt leukemia

2018年(第35回) 健常人試料(標本作製から)

巨赤芽球性貧血

2019年(第36回) 健常人試料

CMML

まとめ

- ・ 形態検査の『プレアナリシス』も大切に! 検体の良否の確認 良好な標本作製 検査データ・臨床情報の確認
- ・ 形態検査の内部精度管理も積極的に! 血算・凝固は機器メーカーからのサポートがあるが 形態検査は自分たちで実施
- ・ 形態検査は、医師への適切なコメントが重要! 積極的に勉強し、研修会等にも参加